L  a  G r a n  E n c i c l o p e d i a   I l u s t r a d a  d e l   P r o y e c t o  S a l ó n  H o g a r

Los Continentes

 

 

Hablemos del espacio geográfico a nivel mundial. La superficie terrestre no cubierta por agua equivale al 29 por ciento, es decir a 147,9 millones de km2 de los 510,1 millones de km2 que tiene nuestro planeta. En cuanto a la distribución de estas tierras emergidas, en el hemisferio norte o septentrional predominan las tierras en relación a las aguas y océanos. Por el contrario, en el hemisferio sur la gran mayoría es agua.

Estas grandes masas son subdivididas, ya sea geográfica o culturalmente (la división Europa/ Asia: Eurasia). Pero tradicionalmente se considera que los continentes son seis: América, Europa, Asia, África, Asia y Antártica.

Actualmente, son 192 los países independientes y reconocidos por la ONU (Organización de las Naciones Unidas). Estos conforman un gran mosaico con diversas características físicas (clima, superficie, relieve, etc.) y demográficas incluidas en los continentes ya mencionados.

Respecto al nivel de desarrollo -entendido como el nivel de progreso alcanzado gracias al buen desempeño económico-, del que disfruta la población que habita las distintas zonas y continentes del planeta, el informe "El estado de la población mundial 2001" del Fondo de Población de las Naciones Unidas (Fnuap) señala que:

- Las regiones más desarrolladas del mundo son América del Norte, Japón, Europa y Australia/Nueva Zelandia, que en total tienen 1.193,9 millones de habitantes (19,5 por ciento de la población mundial).

- Las menos desarrolladas son África, el Caribe, América Latina, Asia (excluido Japón) y Melanesia, Micronesia y Polinesia, que suman 4.940,3 millones (80,5 por ciento del total mundial).

Población mundial

El reparto de la población del mundo se encuentra determinado por factores geográficos y económicos, aunque también influyen causas de carácter sociológico y/o cultural. En la actualidad, el total de habitantes del planeta alcanza a los 6.500 millones. Las zonas más pobladas del mundo se ubican en Asia monzónica (India, China, etc.), donde se concentra más de la mitad de la población total del planeta; luego viene Europa, que tiene una elevada densidad. Por otro lado, existen zonas desprovistas de población ocasionadas por condiciones climáticas extremas: zonas excesivamente frías, zonas áridas, grandes alturas y las selvas vírgenes.

 


Existen diversas teorías que tratan de explicar la conformación continental. La primera de ellas, se remonta la siglo XIX, cuando Antonio Snider-Pellegrini , expuso la idea de que los continentes alguna vez estuvieron juntos y se habían estado separando paulatinamente, pero fue el meteorólogo Alfred Wegener, en 1912, quien propuso esto como una verdadera hipótesis científica: denominada la Deriva Continental, en su publicación El Origen de los Continentes y los Océanos.

Esta hipótesis proporcionaba evidencias de que los límites de África y América del Sur encajaban de manera casi perfecta, también presentaba los patrones de distribución biogeográfica que relacionaban continentes tan distintos y lejanos como África, América del Sur y Australia, y algunas evidencias geomorfológicas como la presencia de las mismas formaciones geológicas a ambos lados del Océano Atlántico a como es el caso de la Cordillera de los Apalaches y la región de los paí­ses Ecandinavos.

La teoría de Wegener proponía que hacia finales del Carbonífero (aprox. 300 m.a.), todos los continentes actuales formaban parte de un supercontinente, al que llamó "PANGEA", rodeado por un océano que cubría el resto de la superficie de la Tierra. La teoría de Weneger indicaba que PANGEA empezó a fragmentarse, primero en dos supercontinentes, Gondwana al sur y Laufasia al norte, y a continuación en los actuales continentes, que empezaron a separarse. La teoría de Wegener no supo explicar lo que originaba el movimiento de los continentes, debiendo enfrentar la concepción aceptada de que el planeta era una masa única e inmóvil, lo que hizo que la teoría fuera fuertemente criticada y no tuvo aceptación dentro de la comunidad geológica.


PANGEA


Algunas décadas después de la segunda guerra mundial , se realizaron investigaciones relacionadas con el magnetismo térmico remanente de las rocas y se comprobó un cambio en la orientación magnética de las rocas de una misma formación. Lo único que podí­a explicar este hecho era que, atraída por el polo magnético, la magnetita presente en las rocas, se situaba en dirección Norte durante el proceso de solidificación.
Una vez fija en esa posición, y a medida que los continentes se desplazaban la magnetita perdía su orientación Norte, y si la formación era separada por un proceso de divergencia, es así como según la trayectoria del desplazamiento de cada capa, la orientación final presentada por la magnetita en las rocas sería diferente. Esto sirvió de base científica para apoyar la hipótesis de que los continentes se habí­an desplazado durante la historia del planeta.

La expansión de los fondos oceánicos
Según Colmes, los continentes eran arrastrados por corrientes de convección en el manto terrestre, simulando una cinta transportadora. Hess propone un modelo, donde las dorsales oceánicas, son zonas de afloramiento de nueva corteza oceánica y las fosas, las zonas de hundimiento (subducción). Con esto explicaba las altas temperaturas y la mayor gravedad de las dorsales oceánicas; la disposición en bandas paralelas de la corteza oceánica, la menor gravedad de las fosas oceánicas, el mayor espesor de los sedimentos justo antes de la fosa oceánica, y la alta sismicidad de dorsales y fosas. Es decir, que la acumulación de sedimentos en los fondos oceánicos y el aumento de la densidad, producto de la contracción térmica al enfriarse la corteza, provocan un aumento del peso de la corteza en esas zonas, generando el hundimiento de la corteza y facilitando el proceso de subducción.

De esta manera, confirmaba el modelo de Holmes sobre las corrientes convectivas del manto. Las dorsales se corresponden con los flujos ascendentes, la corteza con el flujo horizontal superior y la subducción de la fosa con el flujo descendente de la corriente convectiva. La depresión de la cima de las dorsales se debe a que el flujo ascendente se bifurca en dos direcciones, que es donde alcanzan el máximo. Los terremotos se deben a que la corteza, de rocas rígidas se rompe al cambiar de dirección y los volcanes son magma procedente del manto que se cuela entre las fallas de las rocas. De esta manera, la corteza oceánica se expandirá, con el tiempo, separando los continentes.



Poco después Robert Dietz completó la teoría fijando así el nuevo paradigma. La expansión del fondo marino se debe a que la corteza, junto con la parte superior del manto forma una capa rígida llamada litosfera y que tienen un espesor de 70 kilómetros . Esta capa flota sobre la astenósfera que es la capa dúctil en la que se producen los movimientos convectivos.

Así pues, una placa es un fragmento rígido de litosfera, es decir la corteza oceánica, la corteza continental y la parte superior del manto. La litosfera está formada por un número reducido de placas más o menos grandes. Estos fragmentos son rígidos, pasivos, inactivos y se mueven sobre el manto. Sin embargo, en la zona de contacto entre placas se rompen generando terremotos, vulcanismo y deformaciones en la corteza continental (orogénesis). Los límites de una placa son: La dorsal oceánica, la fosa oceánica y determinadas fallas transformantes. En una placa se pueden dar tres movimientos: de separación, a lo largo de las dorsales oceánicas, de aproximación a lo largo de las fosas, y de deslizamiento, a lo largo de las fallas transformantes.


Con este esquema los continentes se comportan de forma pasiva, siendo transportados encima de la corteza oceánica. Así pues, no son los continentes los que se mueven aunque sí son transportados. Y además los fondos oceánicos son mucho más jóvenes, debido a este mecanismo de continua creación y destrucción (máximo 150 millones de años). Para que el radio de la Tierra no se incremente, debido a la expansión de los océanos, además de la creación también debe haber destrucción de la corteza oceánica. Esto es cierto debido a que se ha comprobado en reiteradas ocasiones que cuanto mayor es la distancia de una isla volcánica a la dorsal oceánica más antigua será. Además que las islas volcánicas alejadas de las dorsales están inactivas porque han perdido el contacto con el flujo ascendente del manto; y también son más bajas, ya que están más erosionadas, sin embargo esto es más relativo. El espesor de la litosfera en la corteza oceánica es de unos 50 - 150 kilómetros, mientras que en la corteza continental es de unos 100 - 200 kilómetros.

En 1965 Edward Bullard comprobó que la coincidencia entre las costas de los continentes es casi absoluta a una profundidad de unos 2.000 metros. Bullard logró reconstruir idealmente el continente de Pangea, rodeado de un gran océano, Pantalasa, y con un mar que se internaba desde el este, el mar de Tetis. La tectónica de placas no sólo explica los terremotos y los volcanes, sino también, las grandes cadenas montañosas. El contacto entre placas da lugar a tres situaciones:

1.- La subducción de una plaza oceánica por debajo de otra, lo que da lugar a un arco de islas volcánicas (Islas del Caribe), que incluso puede hacer aflorar la corteza oceánica.

 


2.- La subducción de una placa oceánica por debajo de una corteza continental, provoca la elevación de grandes cadenas montañosas en el continente (los Andes y las Rocosas).

3.- La subducción de las placas de corteza continental, una bajo la otra, que produce grandes cordilleras como el Himalaya. Además, la comprensión de los materiales sedimentados en el borde genera grandes pliegues.


La última gran dorsal, aún en formación, es el valle del Rift, de donde toman el nombre las depresiones de la cima de las dorsales, desde los grandes lagos africanos, hasta el mar muerto. Se considera que en un futuro esa dorsal continúe expandiéndose y forme un nuevo océano.
En la actualidad existen siete placas principales: pacífica, norteamericana, suramericana, africana, euroasiática, indoaustraliana y antártica; y otras siete menores: arábiga, del Caribe, de Nazca, de Cocos, Filipina, del Irán y del Atlántico sur. No obstante, las placas pueden romperse o fundirse, y así cambiar su número.
 
Puntos calientes:
Además del mecanismo convectivo en el manto, se dan también otras formas de ascenso en el terreno denominados puntos calientes, los cuales, generan en medio de las placas fenómenos volcánicos, como las islas de Hawai, Canarias o Yelowstone, aunque no son permanentes, como el Campo de Calatrava (España). Los puntos calientes son un problema para el esquema de células convectivas, ya que si hay una corriente ascendente le debería corresponder otra descendente.
(Explora la imagen)

Hoy en día se considera que no son necesarias células convectivas completamente cerradas como las de la atmósfera sino que existen columnas ascendentes y columnas descendentes con capacidad para empujar horizontalmente las placas. Las columnas descendentes, tendrán capacidad para arrastrar la litosfera hacia el manto. En general se tendería a la célula convectiva pero no sería absolutamente necesario. El problema de este modelo es que deberían existir �puntos fríos� igual que los calientes, cosa que no se ha constatado. Los puntos calientes se consideran como el nacimiento de una nueva dorsal oceánica.

El ciclo de Wilson
Todos los procesos anteriormente expuestos se sintetizan en el ciclo de Wilson, el cual, debe su nombre a John Tuzo Wilson que integra el ritmo del tiempo geológico y la fusión y ruptura de placas. El ciclo del Wilson comienza con la fragmentación de un continente, debido a la acción de un punto caliente. El punto caliente se formaría debajo de los continentes, por cambios de temperatura. Este foco produce el adelgazamiento y fracturación de la litosfera. Aparece, entonces, un rift que irá evolucionando hasta convertirse en un océano.

El fondo de este océano está formado por bandas paralelas de basalto que reflejarían las inversiones magmáticas. Los continentes de ambos lados del rift quedarán como costas sin actividad sísmica, en las que se producirá una importante sedimentación. La corteza oceánica irá enfriándose a medida que se aleja de la dorsal, haciéndose más rígida y densa. Cuando está suficientemente fría se romperá y comenzará la subducción, en la parte más débil (la más cercana al continente). Se genera, así, una fosa, por la que se destruye la corteza oceánica.

Si la fosa se crea, en parte sobre la corteza continental el océano tenderá a cerrarse, originando un relieve de colisión al plegar los sedimentos del borde continental y fracturar el borde del continente. Este relieve se sutura fusionando sendas placas, y formando un gran continente, aunque quedaría una cicatriz más débil. Sobre este gran continente aparecerá de nuevo un punto caliente que lo romperá. Según este esquema alrededor de un continente antiguo se irán fusionando, además de otros continentes, rocas procedentes de la corteza oceánica más modernas.

Se considera que a lo largo de la historia de la Tierra este ciclo se ha completado en cinco ocasiones, precedido por una tectónica de miniplacas, hace entre 2.800 y 2.500 millones de años. Esta es la época en la que se formaron las grandes extensiones de granitos. Los supercontinentes se disgregarán y se unirá en varias ocasiones: hace 2.100 millones de años (Pangea I), 1.800-1.600 millones de años (Pangea II), hace 1.100 millones de años (Pangea III). Y hace 600 millones de años se formó Pangea IV que sufrió un ciclo de Wilson completo hasta formar, hace 250 millones de años Pangea V que comenzaría el ciclo actual. Pangea V se corresponde con el Pangea que imaginó Wegener. Según esto los supercontinentes se forman cada 400 a 500 millones de años, y un punto caliente es capaz de romper un continente en 100 millones de años.

Algunos autores piensan que este ciclo es un modelo más que una realidad, y que los grandes supercontinentes no están unidos al mismo tiempo nunca, sino que se agregan y se disgregan partes en diferentes momentos de la historia de la Tierra , más o menos próximas. Esto es debido a que los puntos calientes se pueden producir bajo la corteza oceánica, y no necesariamente bajo los continentes más grandes, ni en su centro, que es donde menos cambios de temperatura se producen. En la actualidad los puntos calientes más activos están en las islas Canarias, Cabo Verde y en el parque de Yelowstone entre otros.
(Explora la imagen)
Es muy probable que, mientras en algún lugar esté ocurriendo disgregación, en otra ocurre agregación, e incluso mientras está chocando una placa contra otra, en el interior de una de esas placas se está formando un nuevo rift que rompa y separe otras placas. Esto es lo que parece estar ocurriendo en la actualidad en la placa africana que se separa a lo largo de la dorsal del Índico empujando hacia el continente africano pero también se separa a lo largo del valle del Rift, empujando el continente africano hacia el Índico. Aunque el ciclo de Wilson otorga una importancia excesiva a los continentes, es un modelo que debe ser considerado con interés.

El principal problema que no resuelve la teoría es, cómo se producen las corrientes convectivas, cuáles son las irregularidades en el manto, o en el núcleo, qué permite que en un determinado punto la temperatura sea mayor (o menor) que en su entorno.

www.proyectosalonhogar.com