Historia de la Vida - Evolución

Grado 10

MÓDULO 5 - LECCIÓN 1


 

Actividad de exploración

Lee la siguiente introducción.

Muchos científicos creen que los dinosaurios se extinguieron cuando un asteroide impactó la Tierra y envió una tremenda nube de polvo a través de la atmósfera. Esta nube de polvo actuó como cortina o barrera reduciendo la cantidad de luz solar que entraba a la superficie de la Tierra. La reducción de luz solar pudo haber sido la causa de la extinción.

Escribe un párrafo corto explicando cómo la reducción de la entrada de luz solar pudo haber sido la causa de la extinción de los dinosaurios.

Los científicos conocen sobre plantas y animales que vivieron en nuestro planeta hace millones de años pero que no existen hoy en día.

¿Puedes nombrar algunos de esos organismos?

¿Cómo los científicos saben que existieron?

 Leer sobre el tema en este enlace:

 http://www.proyectosalonhogar.com/Enciclopedia_Ilustrada/Dinosaurios/Dinosaurios.html

 

Actividades de conceptualización

Define los siguientes conceptos.

·       Evolución

·       Extinción

·       Fósil

·       Paleontología

·       Teoría

·       Naturalista

·       Selección natural

Contesta las siguientes preguntas.

1.     ¿Qué pasa con las especies a través del tiempo?

2.     Menciona los tipos de fósiles.

3.     ¿En qué tipo de roca se forman los fósiles?

4.     ¿Por qué los científicos buscan fósiles?

5.     ¿Qué aprenden los científicos cuando comparan el ADN encontrado en fósiles de organismos extintos con el de organismos vivos?


 

Los dinosaurios: ¿Qué los mató?

  • No se sabe a ciencia cierta la fecha exacta de la extinción, ya que pudo haber sucedido en un lapso de pocas horas o miles de años, pero lo que sí es seguro es que las especies de dinosaurios murieron para dar paso al reinado de los mamíferos sobre la Tierra.
meteorito
Una de las teorías señala que tal vez un asteroide chocó contra la Tierra y levantó polvo, provocó maremotos y terremotos, fuertes vientos, lo que llevó a la extinción de muchas especies animales.

El Jurásico y el Cretácico fueron los periodos de verdadero apogeo de los dinosaurios. Al final de Cretácico algo ocurrió, como consecuencia de lo cual desaparecen de la Tierra.

Se han dado docenas de explicaciones sobre la extinción de los dinosaurios, la mayoría fantásticas.

Hasta hace poco tiempo se pensaba que los dinosaurios habían desaparecido gradualmente a lo largo del período Cretácico superior. Los recientes descubrimientos que indican el impacto de un gran asteroide o cometa en el límite entre el periodo Cretácico y la era Terciaria, hace unos 65 millones de años, fomentó la hipótesis de que tal impacto podía haber desencadenado cambios climáticos que acabaron con el reino de los dinosaurios.

Aunque tales hechos, comunes en la historia geológica de la Tierra, podrían haber tenido consecuencias en el medio ambiente, la gran mayoría de los dinosaurios ya se habían extinguido por ese tiempo. Además, otros animales como tortugas, cocodrilos, peces y anfibios, que también tendrían que haber sufrido cataclismo, sobrevivieron con pérdidas de menor importancia.

Se sabe que a lo largo del Cretácico superior el clima se fue volviendo más inestable y estacional, y que tanto la vida terrestre como la marina se vieron afectadas por olas de desaparición. Aunque no pueden descartarse los efectos de un impacto extraterrestre, éstos no explican los datos que se tienen de extinción y supervivencia al final del periodo Cretácico.

A la teoría del impacto de asteroides, otros científicos suponen la aparición del murganucodón, pequeño mamífero, que pudo acabar con los huevos de los gigantescos saurios que poblaron el planeta hasta hace unos 66 millones de años, provocando su rápida y total extinción.

¿Cómo pudo causar este meteorito las extinciones masivas que se observan en el límite del Cretácico /terciario, cuando se extinguieron los dinosaurios?.

Actualmente se manejan varias teorías. Se habla por ejemplo de la volatización de las rocas de la Península de Yucatán, México incluyendo calizas y evaporitas. Estas, al ser volatizadas, produjeron ácido carbónico y ácido sulfúrico, cuya consecuencia es la formación de lluvia ácida, que afectó el desarrollo de plantas y animales.

También se habla de un periodo de oscuridad provocado por la cantidad de polvo que se liberó con el impacto. Ésta pudo haber sido de unas horas o de varios meses, y si la luz no pudo entrar a la superficie de la Tierra, las plantas se murieron dejando sin comida a los animales. Finalmente se han postulado tanto los efectos de invernadero como los de un invierno nuclear.


Evolución

Las pruebas acumuladas a favor de la evolución por todas las disciplinas biológicas han aumentado con el avance científico, llegando a ser aplastantes. En particular, la biología molecular, la más recientes y expansiva de las disciplinas biológicas, ha confirmado de manera contundente la evolución y muchos detalles de su historia. Pasamos a ver algunos ejemplos de las evidencias que demuestran la evolución.

Temas relacionados:

http://www.proyectosalonhogar.com/Enciclopedia_Ilustrada/Prehistoria/Pre5.htm

La teoria extraterrestre:

http://www.proyectosalonhogar.com/ELOHIM.htm

El registro fósil. El registro fósil nos muestra que muchos tipos de organismos extintos fueron muy diferentes de los actuales, así como la sucesión de organismos en el tiempo, y además permite mostrar los estadios de transición de unas formas a otras.

Los fósiles

Cuando un organismo muere, sus restos son prácticamente destruidos por las bacterias y los agentes físicos. Rara vez algún resto blando deja su huella, pero a veces ocurre (algunas medusas han dejados "huellas" de más de 500 millones de años). Del mismo modo, en raras ocasiones las partes duras, como huesos, dientes, conchas, etc. enterradas en el lodo, son protegidas por este de la acción bacteriana. Estos restos petrifican (mineralizan, fosilizan) en asiciación con las rocas vecinas en las que están incrustados.

Los métodos de datación radiactiva dan una edad para la Tierra de 4.500 millones de años, y los primeros fósiles datan de 3,600 millones de años, correspondientes a la actividad de bacterias y cianobacterias (los llamados estromatolitos).

Los primeros fósiles de animales datan de 700 m. a., y la mayoría de los phyla actuales aparecieron hace 570 m. a. Los primeros vertebrados aparecieron hace 400 m. a. y loa mamíferos lo hicieron hace 200 m. a.

El ámbar, popular por su utilización como argumento cinematográfico en una película de gran difusión, es también un fósil. En este caso se han fosilizado resinas de árboles que, en su discurrir por el tronco, a veces atrapaban insectos, que quedaban incluidos permanentemente en ellos. Como el de la fotografía. El registro fósil, sin embargo, es incompleto: de la pequeñísima parte de organismo que han dado lugar a fósiles, sólo una fracción de ellos ha sido descubierta, y menor aún es el número de ejemplares estudiado por los paleontólogos.

En muchos casos se ha reconstruido el registro fósil completo de algún animal. Es el caso del caballo.

 

La evolución del caballo

El registro conocido comienza con Hyracotherium, del tamaño de un perro, con varios dedos en cada pata y dentición para ramonear, que aparece hace 50 millones de años, y finaliza con Equus, el caballo actual, mucho más grande, con solo un dedo por pata y condentadura apropiada para pastar. Se conservan muchas formas intermedias, así como otras formas que evolucionaron hacia otras ramas que no han dejado descendientes actuales.

Otro ejemplo, es el de la mandíbula de los reptiles. Está formada por varios huesos; la de los mamíferos es de una sola pieza; los otros huesos de la mandíbula de los reptiles evolucionaron hasta convertirse en los que ahora forman parte del oído de los mamíferos. Esto puede parecer inverosímil, ya que es difícil imaginar las funciones intermedias de estos huesos. En respuesta a esto, se han descubierto dos tipos de terápsido (reptil de forma parecida a la de los mamíferos actuales) con una doble articulación mandibular: una compuesta de los huesos que persiste en la mandíbula mamífera y la otro por los huesos cuadrado y articular que, eventualmente, dieron lugar al martillo y al yunque del oído de los mamíferos.

 

La mandíbula de los reptiles

Semejanzas anatómicas. El proceso de evolución consiste en la transformación de unos organismos en otros, que, por ser esta gradual (al menos, en una de las concepciones del cambio evolutivo), permite reconocer las relaciones de parentesco entre especies descendientes de una mismo antepasado. Especies con un ancestro común reciente son anatómicamente más semejantes entre sí que respecto a otras especies más alejadas. A medida que transcurre el tiempo las semejanzas anatómicas se van diluyendo y pueden llegar a ser irreconocibles. Sin embargo, en el nivel molecular, las semejanzas son reconocibles aunque hayan transcurrido millones de años.

Aquí se incluye los estudios anatómicos sobre órganos homólogos, es decir, órganos con diferentes funciones pero que revelan la misma estructura anatómica y, por consiguiente, el mismo origen.

 

Órganos homólogos

Desarrollo embrionario y atavismos. Todos los vertebrados, desde los peces hasta las lagartijas y el hombre, se desarrollan de manera bastante similar en las etapas iniciales de su ontogenia, y se van diferenciando cada vez más a medida que el desarrollo embrionario va avanzando al estado adulto.

¿Cómo explicar este hecho? La respuesta es que estos patrones han sido heredados de su ancestro común, es decir, existen unos genes comunes que regulan el desarrollo embrionario y cuyos efectos van diferenciándose conforme este avanza. Por ejemplo, los embriones humanos y de otros vertebrados terrestres presentan aberturas branquiales, y los embriones humanos presentan durante su cuarta semana de desarrollo una cola bien definida.

Algunos rudimentos embrionarios persisten como vestigios, o atavismos, en el organismo adulto, como el caso del rudimento de cola en el hombre. El órgano rudimentarios más conocido en el hombre es el apéndice vermiforme, que es un vestigio sin función de un órgano que se desarrolla completamente en mamíferos como el conejo u otros herbívoros, en los que el cecum y su apéndice son grandes y almacenan celulosa para digerirla con bacterias.

Biogeografía. Una de las observaciones que convenció a Darwin de la evolución de las especies fue su distribución geográfica, como en el caso de los pinzones de las Galápagos. Otro ejemplo estudiado es el de las moscas Drosophila, de las que existen unas 1500 especies, 500 de ellas en las islas Hawai. Hay también en estas islas más de 100 especies de moluscos terrestres que no existen en ninguna otra parte del mundo.

La inusual diversidad de especies en algunos archipiélagos se explica con facilidad como producto de la evolución. Estas islas se encuentran muy alejadas de los continentes y de otros archipiélagos, por lo que muy pocos colonizadores pudieron llegar a ellas. Pero las especies que llegaron encontraron muchos nichos ecológicos desocupados, sin especies competidoras o depredadoras que limitaran su multiplicación. En respuesta a esta situación, las especies se diversificaron con rapidez, en un proceso que se llama radiación adaptativa (diversificación de especies que ocupan nichos ecológicos preexistentes).

En referencia a este punto, y con respecto al caso de los pinzones de las Galápagos, quizá una sóla pareja de ellos, o una pequeña bandada, llegó a la isla. Se asentaron allí, alimentándose de semillas y bayas igual que hacían en tierra firme. Y lo que es más importante: allí no existían depredadores ni se daba competendcia alguna por los alimentos. Además, existía una amplia variedad de nichos ecológicos, sobre todo porque los insectos se había reproducido masivamente por las mismas causas.

Los valles, las elevadas formaciones rocosas y los propios límites de las costas favorecieron la separación de poblaciones. Así, tras una rápida proliferación, empezó a dejarse sentir una competencia por el alimento,,, los pinzones se dividieron en grupos y se separaron unos de otros.

De este modo, en aislamiento genético, comenzó un procesos de especialización que, a su vez, dio lugar a nuevos procesos de separación. Algunos grupos permanecieron en el suelo y otros se alojaron en las ramas de los árboles; muchos se tranformaron en insectívorosy otros hasta utilizan púas de cactus par escarbar en las grietas en busca de larvas. Alguna pareja se "atrevió" a crizar a las islas vecinas, convirtiéndose en "fundadora" de nuevas poblaciones que sifrirían los mismo procesos.

Así fue como llegaron a formarse las 13 especies actuales de pinzones que habitan en las Islas Galápagos, que actualmente constituyen una subfamilia propia: Geospiza.

Biología molecular. Existe una gran uniformidad en los componentes moleculares de los seres vivos. Tanto en las bacterias y otros microorganismos como en organismos superiores (vegetales y animales), la información está expresada como secuencias de nucleótidos, que se traducen en proteínas formadas por los mismos veinte aminoácidos.

Esta uniformidad de las estructuras moleculares revela la existencia de ancestros comunes para todos los organismos y la continuidad genética de estos.  

Imaginemos el siguiente supuesto: una determinada población de una especie sufre una escisión de un número pequeño de sus componentes. Lo que en un principio era un patrimonio genético común (la mezcla hacía "homogéneo" ese patrimonio") va a convertirse en el comienzo de un divergencia, ya que conel tiempo, la nueva población va acumulando cambio que la harán diferente de la primera. La divergencia guardará correlación con el tiempo de su separación. Podemos usar esta divergencia para averiguar el parentesco entre dos especies. Bien es cierto que no todo el ADN evoluciona a la misma velocidad: las secuencias no codificante lo hacen más deprisa. Por eso es importante elegir el ADN adecuado.

Las evidencias de evolución reveladas por la biología molecular son aún más concisas, ya que el grado de similitud entre secuencias de nucleótidos o de aminoácidos puede ser determinado con precisión. Por ejemplo, el citocromo c de humanos y chimpancés está formado por 104 aminoácidos, exactamente los mismos y en el mismo orden. El citocromo del mono Rhesus sólo difiere del de los humanos en un aminoácido de los 104; el del caballo en 11 aminoácidos; y el del atún en 21. El grado de similitud refleja la proximidad del ancestro común, lo cual permite reconstruir la filogenia de estos organismos.

La secuenciación de ADN ha demostrado que el chimpancé es nuestro pariente actual más cercano: su ADN difiere del nuestro en sólo un 2'5%.

Es posible que no haya otra teoría o concepto científico que esté tan sólidamente argumentado como lo está la evolución.

 

EL REGISTRO MOLECULAR DE LA EVOLUCIÓN.

Con las modernas técnicas en biología molecular es posible estudiar la evolución en el nivel más íntimo en que se produce: el ADN.

El ADN contiene información sobre la historia evolutiva del organismo, debido a que los genes cambian por mutaciones. Dado que la evolución tiene lugar paso a paso, el número de sustituciones en el ADN refleja la duración del período evolutivo correspondiente.

Si comparamos dos organismos, como el hombre y el chimpancé, y observamos que el número de diferencias de su ADN es menor que el que hay entre cualquiera de ellos y el orangután, podemos concluir que la divergencia entre estas dos especies es más reciente que entre ellas y el orangután. Es decir, el número de diferencias en las cadenas de ADN o de proteínas es proporcinal a la distancia evolutiva existente entre las especies correspondientes.

Los estudios moleculares tienen ventajas notables sobre la anatomía comprada y otras disciplinas clásicas:

1. La información es más fácil de cuantificar: el número de elementos diferentes puede ser exactamente determinado comparando las cadenas de ADN o de proteína entre dos especies.

2. Es posible hacer comparaciones entre individuos muy diversos. La anatomía comprada es totalmente inadecuada para determinar el grado de diferenciación entre especies tan diferentes como una levadura, un madroño y una liebre, pero es perfectamente posible medir sus diferencias en una molécula determinada, como el citocromo c.

3. El número de características que se puede comparar es casi ilimitado. Una persona tiene 3,000 millones de nucleótidos en el genoma, que pueden constituir entre 30,000 y 100,000 genes diferentes. Basta estudiar un número grande de genes para llegar a conclusiones más precisas.

 

© Derechos Reservados

Escuela Virtual de Puerto Rico.


Nota:

Esta propuesta es propiedad intelectual de la Escuela Virtual de Puerto Rico. Divulgar o compartir su contenido sin autorización entra en violación de la seguridad recíproca requerida. Se tomarán las acciones necesarias para asegurar que su uso sea sólo para beneficio de la matrícula del Proyecto.